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E-mail: wojrudz@amu.edu.pl

Received 10 October 2008, in final form 28 November 2008
Published 8 January 2009
Online at stacks.iop.org/JPhysCM/21/046005

Abstract
Spin-polarized electronic tunneling through a quantum dot coupled to ferromagnetic electrodes
is investigated within a nonequilibrium Green function approach. An interplay between
coherent intradot spin-flip transitions, tunneling processes and Coulomb correlations on the dot
is studied for current–voltage characteristics of the tunneling junction in parallel and
antiparallel magnetic configurations of the leads. It is found that due to the spin-flip processes
electric current in the antiparallel configuration tends to the current characteristics in the
parallel configuration, thus giving rise to suppression of the tunnel magnetoresistance (TMR)
between the threshold bias voltages at which the dot energy level becomes active in tunneling.
Also, the effect of a negative differential conductance in symmetrical junctions, splitting of the
conductance peaks, significant modulation of TMR peaks around the threshold bias voltages as
well as suppression of the diode-like behavior in asymmetrical junctions is discussed in the
context of coherent intradot spin-flip transitions. It is also shown that TMR may be inverted at
selected gate voltages, which qualitatively reproduces the TMR behavior predicted recently for
temperatures in the Kondo regime, and observed experimentally beyond the Kondo regime for a
semiconductor InAs quantum dot coupled to nickel electrodes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Coherent manipulation of the charge states in nano-scale
devices is crucial for future spintronics and quantum
information data processing (see e.g. [1–3]). In particular,
progress in nanofabrication technology has stimulated both
theoretical and experimental studies on understanding intrinsic
spin relaxation mechanisms as well as effects due to coherent
spin-flip processes in mesoscopic systems [1, 4–28]. A device
that is most widely used in these investigations consists of
a quantum dot (QD) coupled to external electrodes through
tunneling barriers.

Experimentally, intradot spin-flip phenomena have been
investigated in semiconductor GaAs, InAs and InGaAs
QDs to measure spin relaxation and spin decoherence
times [1, 9, 13, 15–18, 20, 21, 24, 25, 27]. In particular, it is
indicated that spin flips and spin decoherence are dominated

by spin–orbit interactions and hyperfine coupling to lattice
nuclear spins. Also, a number of successful attempts at spin
manipulation in the considered semiconductor QDs have been
reported [9, 18, 27].

Theoretical investigations on spin-flip transitions in GaAs-
based QDs have revealed that spin–orbit coupling may cause
the spin rotation of an electron while in a QD [5]. Regarding
the dynamics of electron spins coupled to nuclei, a detailed
theory describing the properties of coupled electrons in double
QDs has been proposed to guide experiments on coherent
spin manipulation of electron spins [26]. In turn, for hybrid
ferromagnetic QD–superconductor tunneling junctions a novel
double-peak structure in the Andreev reflection conductance
spectrum has been predicted to occur for strong enough spin-
flip scattering [12].

Another important element of theories so far is the
investigation of the influence of intradot spin-flip transitions
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on current–voltage (I –V ) characteristics in magnetic tunnel
junctions. When both external leads are ferromagnetic, then
the basic spin-dependent property in such a junction is the
tunnel magnetoresistance (TMR). This feature appears as a
change in the junction resistance when magnetic moments
of external electrodes are switched between the parallel (P)
alignment and the antiparallel (AP) one. The TMR effect
is known to occur in planar junctions [29–31], granular
systems [20, 32, 33] and carbon nanotubes [2], and has been
also predicted to appear in mesoscopic double-barrier junctions
based on QDs [34–50]. Recently, the first demonstration of
the gate-tunable memory effect has been reported for a spin-
valve device consisting of a self-assembled InAs quantum dot
with ferromagnetic Co and Ni leads [51, 52]. In particular, it
has been revealed that in the vicinity of the Coulomb blockade
conductance peak, the TMR may be significantly modulated
and even its sign can be switched by changing the gate voltage.

The effect of spin-flip transitions is known to reduce
the TMR for a quantum dot in the sequential tunneling
regime [6]. At low temperatures in the Kondo regime it is
also found that the zero bias TMR becomes negative with
increasing spin-flip transition amplitude [7, 8]. The latter
property is accompanied by suppression of the Kondo effect
with simultaneous splitting of the Kondo resonance into the
well-defined three and two peaks in the parallel and antiparallel
configuration, respectively. Inverse tunnel magnetoresistance
has been also observed for fast intradot intrinsic spin relaxation
occurring in the co-tunneling regime [22]. Within the same
investigation an interesting effect of spin relaxation-induced
enhancement of the diode-like behavior has been predicted
for quantum dots asymmetrically coupled to the ferromagnetic
leads.

In this paper an effect of coherent intradot spin-flip
processes on electric current and TMR is considered for spin-
polarized electronic transport through quantum dots weakly
coupled to external ferromagnetic electrodes, i.e. the focus is
on spin-polarized tunneling at temperatures above the Kondo
limit. The situation when the spin-flip scattering strength
overwhelms that of the tunneling coupling is analyzed, which
may originate either from the transverse component of an
applied magnetic field or from tunable spin–orbit coupling of
the Rashba–Dresselhaus type in the dot (see e.g. [54–56]).
What is important is that the considered spin-flip transitions lift
the degeneracy of the discrete dot level thus giving rise to new
features of the current–voltage characteristics for the tunneling
junction.

The aim of the present paper is to discuss different aspects
of the spin-valve phenomenon in systems based on QDs, in the
context of an interplay between intradot spin-flip transitions,
tunneling processes and Coulomb correlations on the dot. The
most spectacular effects due to the spin-flip transitions are
expected to occur in spintronic devices working as a perfect
spin valve or as a mesoscopic diode. In the former case the
question of mechanism of reduction of the maximum TMR
ratio for a dot coupled to half-metallic electrodes arises when
the spin-flip processes take place. As for the nano-scale current
rectification effect, an important condition for the diode-like
behavior is the degeneracy of the ground state of the quantum

dot. This spin degeneracy is lifted when an electron may
tunnel into the superposition of the up- and down-spin states
on the dot. Thus, the question of modification of the diode
characteristics arises in the case when the coherent spin-flip
transitions are allowed to occur on the dot.

In order to calculate the electric current and TMR
we employ the nonequilibrium Green function technique,
using the equation of motion method in the Hartree–Fock
approximation. In contrast to the previous theoretical attempts
at studying the spin-flip effects in QDs, based on the master
equation or on the second-order perturbation method [6, 22],
the approach used here allows for the spin-flip transitions
to be analyzed in both sequential and higher-order tunneling
regimes. The many-body approach used here also allows for
numerical detection of the intradot Larmor precession of an
electron spin around an axis perpendicular to the easy axis
of the external leads [57]. The magnitude of such a spin
precession in the presence of coherent rotation of electron spin
on the dot may be readily evaluated within the self-consistent
Green function calculation.

The paper is organized as follows. In section 2 we
describe a model of the system. The theoretical method is
described in section 3, where the equation of motion method
is used to derive nonequilibrium Green functions of the dot.
Next, the Green functions are used to calculate transport
characteristics for the system. Relevant numerical results
for the tunneling current, conductance and magnetoresistance
as well as averages of the spin components on the dot are
presented and discussed in section 4. Finally, a summary and
general conclusions are given in section 5.

2. Model

We consider a single-level quantum dot coupled to two
ferromagnetic leads via tunneling barriers. The whole system
can be described by a Hamiltonian of the general form

H = Hl + Hr + Hd + Ht. (1)

The term Hν describes the left (ν = l) and right (ν = r)
electrodes in the non-interacting quasi-particle approximation

Hν =
∑

k,σ

εν
kσ a†

νkσ aνkσ , (2)

where εν
kσ is the single-electron energy in the νth electrode for

the wavevector k and spin σ (σ = ↑,↓), whereas a†
νkσ and aνkσ

are the corresponding creation and annihilation operators. Note
moreover that both the ferromagnetic leads are assumed to
possess the same easy axis along the z-direction. The term
Hd in equation (1) describes the quantum dot

Hd = εd

∑

σ

c†
σ cσ + Uc†

↑c↑c†
↓c↓ + R(c†

↑c↓ + c†
↓c↑), (3)

where εd denotes the energy of the discrete level, which is
doubly degenerate in the spin index σ , U is the electron
correlation parameter and c†

σ and cσ are the creation and
annihilation operators, respectively, for electrons with spin
orientation σ = ↑ ( ↓). The parameter R in equation (3)
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describes the phenomenological spin-flip transition amplitude.
The spin-flip term is assumed to be coherent, in the sense that
the spin-flip strength R involves reversible transitions between
up- and down-spin states on the dot. Such an effect may
originate from a spin–orbit coupling in the dot or from the
transverse component of a local magnetic field applied, for
example, within the electron spin resonance technique [3, 58].

Finally, the tunneling part of the model Hamiltonian (1)
takes the form

Ht =
∑

ν,k,σ

T ν
kσ a†

νkσ cσ + h.c., (4)

where T ν
kσ (ν = l, r) is the tunneling amplitude and h.c. stands

for the Hermitian conjugate terms.
As stated above, the spin quantization axes in the

external electrodes are fixed parallel to the z-direction of the
Cartesian coordinate system by the internal magnetization of
the ferromagnets. It indicates that the incident electrons with
up-spin and down-spin from the source lead should tunnel
coherently onto the discrete level split by the intradot spin flips.
This tunneling of electrons into a superposition of spin-up and
spin-down states may be introduced by using spin rotation
transformation [7]:

d↑(↓) = 1√
2
(c↑± c↓). (5)

Thus, the dot Hamiltonian (3) is reshaped into the following
form

Hd =
∑

σ

εdσ d†
σ dσ + Ud†

↑d↑d†
↓d↓, (6)

with

εd↑(↓) = εd∓R, (7)

whereas the tunneling Hamiltonian (4) becomes

Ht = 1√
2

∑

ν,k,σ

(
T ν

k↑a†
νk↑ + (−1)δ↑σ T ν

k↓a†
νk↓

)
dσ + h.c. (8)

3. Green function formalism

To calculate electric current in the nonequilibrium situation
we make use of the nonequilibrium Green function defined
on the Keldysh contour [60]. Accordingly, we introduce the
causal (time-ordered) Green function of the dot, Gσσ ′(t) ≡
−i〈T [dσ (t), d†

σ ′(0)]〉, as well as the lesser correlation Green
function defined as G<

σσ ′(t) ≡ i〈d†
σ ′(0)dσ (t)〉. The explicit

expression for these Green functions can be obtained by using
the equation of motion method. The equation of motion for
the Fourier transforms of the causal correlators defined as
Gσσ ′(ε) ≡ 〈〈dσ | d†

σ ′ 〉〉ε reads

(ε − εd)〈〈dσ | d†
σ ′ 〉〉ε = δσσ ′

+
∑

k,ν

[T ∗ν
kσ 〈〈aνkσ | d†

σ ′ 〉〉ε + (−1)δ↑σ T ∗ν
k−σ 〈〈aνk−σ | d†

σ ′ 〉〉ε ]

+ U〈〈dσ d†
−σ d−σ | d†

σ ′ 〉〉ε . (9)

Applying the equation of motion to the three new Green
functions on the r.h.s. of equation (9), one finds

(ε − εν
k±σ )〈〈aνk±σ | d†

σ ′ 〉〉ε
= 1√

2
T ν

k±σ

[
〈〈d±σ | d†

σ ′ 〉〉ε + (−1)δ↓σ 〈〈d∓σ | d†
σ ′ 〉〉ε

]
, (10)

(ε − εdσ − U)〈〈dσ d†
−σ d−σ | d†

σ ′ 〉〉ε = 〈{dσ d†
−σ d−σ , d†

σ ′ }〉

+ 〈d†
−σ d−σ 〉√

2

∑

kν

[T ∗ν
kσ 〈〈aνkσ | d†

σ ′ 〉〉ε

− T ∗ν
k−σ 〈〈aνk−σ | d†

σ ′ 〉〉ε ]

− 〈d†
−σ dσ 〉√

2

∑

kν

[T ∗ν
kσ 〈〈aνkσ | d†

σ ′ 〉〉ε

+ T ∗ν
k−σ 〈〈aνk−σ | d†

σ ′ 〉〉ε ]. (11)

In obtaining the equation of motion (11) for the higher-
order Green function we have neglected correlations involving
lead electrons and the Hartree–Fock decoupling scheme was
applied, 〈〈aνkσ d†

−σ d±σ | c†
σ ′ 〉〉ε → 〈d†

−σ d±σ 〉〈〈aνkσ |c†
σ ′ 〉〉ε ,

where 〈· · ·〉 means the quantum statistical average value of
the appropriate operator. This approximation closes the set of
equations (9)–(11) allowing us to find a solution for the causal
Green functions Gσσ ′(ε)

G(ε) =
[

G↑↑(ε) G↑↓(ε)

G↓↑(ε) G↓↓(ε)

]
, (12)

from the Dyson matrix equation

G(ε) = [
1 − g(0)(ε)Σ(ε)

]−1
g(0)(ε), (13)

where g(0)(ε) is the Green function of the dot in the absence
of Coulomb correlation and coupling to the leads, g(0)

σσ ′(ε) =
δσσ ′(ε − εdσ )−1, and where Σ(ε) is the self-energy given by

Σ(ε) =
[

�1(ε) �2(ε)

�2(ε) �1(ε)

]
, (14)

with

�1,2(ε) = 1

2

∑

k,ν

[ |T ν
k↑|2

ε − εν
k↑

± |T ν
k↓|2

ε − εν
k↓

]
. (15)

Finally one finds the explicit expressions for the causal
Green functions:

Gσσ (ε) = Aσσ gσσ (ε) + Bσσ g−σσ (ε)

Aσσ A−σ−σ − Bσσ B−σ−σ

, (16)

G−σσ (ε) = Aσσ g−σσ (ε) + B−σ−σ gσσ (ε)

Aσσ A−σ−σ − Bσσ B−σ−σ

, (17)

where

Aσσ = 1 − g−σ−σ (ε)�1(ε) − g−σσ (ε)�2(ε), (18)

Bσσ = gσσ (ε)�2(ε) + gσ−σ (ε)�1(ε) (19)

with

gσσ (ε) = ε − εdσ − U(1 − 〈d†
−σ d−σ 〉)

(ε − εdσ )(ε − εdσ − U)
, (20)

3
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gσ−σ (ε) = − U〈d†
−σ dσ 〉

(ε − εdσ )(ε − εdσ − U)
. (21)

The retarded self-energies (15) are given by the formulae

�1,2(ε)

= 1

2

∑

ν

[
�ν

↑(ε)±�ν
↓(ε)

] [
1

π
ln

(
D + eVν − ε

D − eVν + ε

)
+ i

]
, (22)

where

�ν
↑(↓)(ε) = 2π

∑

k

|T ν
k↑(↓)|2δ(ε − εν

k↑(↓)) (23)

for ν = l, r. It has been assumed that the lower and upper edges
of the electron band at zero bias are at −D and D, respectively.
In the following we assume

�l
↑(↓)(ε) = �l

↑(↓) = �0(1 ± p l) (24)

and
�r

↑(↓)(ε) = �r
↑(↓) = α�0(1 ± p r) (25)

when ε is within the electron band and zero otherwise. The
parameters p l and p r describe the spin asymmetry of the
coupling to the left and right electrodes, and �0 determines
the tunneling rate in the case when pν = 0. Apart from
this, the parameter α in the above formula takes into account
asymmetry between coupling of the dot to the left and right
electrodes.

Since the self-energies given explicitly by equation (22)
are independent of U , then one can compute exactly the density
matrix in the spin space, using the Keldysh equation for the
correlation function G<(ε)

G<(ε) = GR(ε)Σ<(ε)GA(ε), (26)

where GR(A)(ε) are the retarded (advanced) Green functions,
GR(A)

σσ ′ (ε) = Gσσ ′(ε ± iη), and where

Σ<(ε) = −
∑

ν

[ΣR
ν (ε) − ΣA

ν (ε)] fν(ε). (27)

The quantities ΣR(A)
ν (ε) in equation (27) are the retarded

(advanced) self-energies and fν(ε) denotes the Fermi–Dirac
distribution function for the νth electrode, fν(ε) = 1/{1 +
exp[(ε − μν)/kBT ]}, with the electrochemical potentials μl =
eVl = eV/2 and μr = eVr = −eV/2.

The average values of the occupation numbers 〈d†
σ dσ 〉 and

〈d†
−σ dσ 〉, which enter the expressions for Green functions, have

to be calculated self-consistently by using the lesser Green
function as

〈d†
σ dσ 〉 = Im

∫ +∞

−∞
dε

2π
G<

σσ (ε) (28)

and

〈d†
σ d−σ 〉 = −i

∫ +∞

−∞
dε

2π
G<

−σσ (ε). (29)

After obtaining these statistical averages, one then
proceeds to calculate the average values of the spin
components accumulated on the dot due to electron tunneling

accompanied by the intradot spin-flip processes. These
components can be derived from the diagonal and off-diagonal
occupation numbers (28) and (29), and in the units of h̄ are
given by the formulae

〈Sz〉 = (n↑ − n↓)/2, (30)

〈Sy〉 = Im(n↑↓), (31)

〈Sx 〉 = Re(n↑↓), (32)

where for simplicity we have defined 〈d†
σ dσ 〉≡ nσ and

〈d†
σ d−σ 〉≡ nσ−σ .

Spin-polarized electric current flowing from the νth lead
to the dot is given by the formula [60]

Jν = ie

h̄

∫ +∞

−∞
dε

2π
Tr

{
Γν(G<(ε) + fν(ε)[GR(ε) − GA(ε)])}

(33)
with

Γl = �0

(
1 + p l 0

0 1 − p l

)
(34)

and

Γr = �0α

(
1±p r 0

0 1∓p r

)
(35)

where the upper and lower signs in (35) correspond to
parallel and antiparallel alignment of the lead magnetizations,
respectively. Taking into account (16)–(27) together with (33)–
(35) one obtains the final expression for the symmetrized
electric current in the P(AP) configuration, J P(AP) =
(1/2)(J P(AP)

l − J P(AP)
r ):

J P(AP) = eα�2
0

4π h̄

∫ +∞

−∞
dε[ fl(ε) − fr(ε)] j P(AP)(ε), (36)

with

j P(AP)(ε) = (p l±p r)[GR
↑↑(ε)GR∗

↑↑(ε) + GR
↑↓(ε)GR∗

↑↓(ε)

− GR
↓↑(ε)GR∗

↓↑(ε) − GR
↓↓(ε)GR∗

↓↓(ε)]
± p l p r[GR

↑↑(ε)GR∗
↑↓(ε) + GR

↑↓(ε)GR∗
↑↑(ε)

− GR
↓↑(ε)GR∗

↓↓(ε) − GR
↓↓(ε)GR∗

↓↑(ε)]
+ 2[GR

↑↑(ε)GR∗
↑↑(ε) + GR

↑↓(ε)GR∗
↑↓(ε) + GR

↓↑(ε)GR∗
↓↑(ε)

+ GR
↓↓(ε)GR∗

↓↓(ε)], (37)

as well as the corresponding tunnel magnetoresistance defined
as

TMR = J P − J AP

J AP
. (38)

4. Numerical results

4.1. Maps of the electric current, conductance and TMR in the
(eV –εd)-plane

Let us first explore features of electric current, differential
conductance and TMR shown in figure 1. The presented
maps are calculated for a symmetric tunneling junction, i.e. the
single-level QD is coupled to identical ferromagnets, pl = pr,
via equivalent barriers, α = 1. The transport characteristics
under discussion are displayed in the (eV –εd)-plane. When

4
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Figure 1. Maps of electric current ((a), (d)), differential conductance ((b), (e)) and TMR ((c), (f)) as a function of the transport bias voltage
and the quantum dot energy level (εd) calculated for a symmetric junction. The electric currents (in units of eα�0/h̄) and the corresponding
conductances (in units of 2e2/h) are displayed for the parallel configuration of magnetic moments in the leads. The transport characteristics
of the system without spin-flip transitions, R = 0 ((a)–(c)), are compared to the same quantities in the system with non-zero intradot spin-flip
strength, R = 0.2 eV ((d)–(f)). The other parameters are pl = pr = 0.5, α = 1, U = 0.5 eV, �0 = 0.01 eV and T = 100 K.

spin flips on the dot are negligible, R = 0, the dot may
be empty, single or, due to finite Coulomb correlations on
the dot, doubly occupied, thus giving rise to the two steps
(visible in figure 1(a)) in the current at bias voltages at
which εd and εd + U cross the Fermi level of the source
electrode. The above occurs for all the εd dot level positions
in equilibrium, except for the specific case of εd = −U/2.
The border lines in the current map also define the Coulomb
blockade diamonds, where sequential tunneling processes are
exponentially suppressed. The steps in the current at threshold
bias voltages determine the positions of the conductance peaks,
which form the lines visible on the map in figure 1(b). A
similar qualitative picture as in figures 1(a) and (b) is obtained
for the current and conductance in the AP configuration.
Hence, the TMR ratio may be evaluated from the formula (38).
As shown in figure 1(c), the TMR quantity exhibits two
essential features. First, TMR is positive in the whole (eV –εd)-
plane; second, TMR is oscillating along both axes, being
suppressed or enhanced depending on bias voltage and on

the position of the discrete level. In the linear response
regime TMR is enhanced in the whole εd range except for
the resonances at εd = 0 and εd = −U , at which the
corresponding linear conductance experiences maxima. In the
nonequilibrium situation TMR has a broad maximum in the
Coulomb blockade regime, in the bias voltage range below the
first threshold, arising due to higher-order tunneling processes.
In turn, the TMR maximum in the sequential tunneling regime
appears when the dot is singly occupied, i.e. when only the
level εd is in the tunneling window. In this situation, the
difference in spin asymmetry for tunneling rates in the AP
configuration leads to a difference in occupancy of the dot
by majority and minority electrons, n↑ > n↓. By contrast,
in the P configuration one has n↑ = n↓. Effectively, this
property gives rise to suppression of electric current in the AP
configuration relative to the current flowing in the P case so
that, in accordance with equation (38), it leads to enhancement
of the TMR ratio. When the level εd + U also enters the
tunneling window, the dot may become doubly occupied,

5
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which means that two electrons with opposite spins may tunnel
through the junction. The current enhancement in both P
and AP configurations results finally in a significant TMR
suppression above the second threshold bias voltage.

When we consider the spin-flip transitions on the dot, then
in general one should expect that these processes reduce the
differences between the occupation numbers n↑ and n↓. Then,
with increasing R the electric current in the AP configuration
should tend to the current flowing in the parallel case, thus
reducing TMR. Figure 1(f) reveals such a reduction of TMR
in the Coulomb blockade as well as in the sequential tunneling
regime. Besides, a number of new effects in the transport
characteristics in figures 1(d)–(f) are also visible. It is clearly
seen in figure 1(d) that additional steps appear in the current,
which correspondingly resize the Coulomb blockade diamond
areas. One may better understand the origin of this property
using the map in figure 1(e), where the system of distinct
lines indicates the positions of the differential conductance
peaks. Each pair of the conductance maxima is split at the
distance 2R and these split peaks are positioned symmetrically
around the threshold bias voltages. Notice also that when the
dot discrete level in equilibrium lies above the Fermi level of
the electrodes, εd > 0, or deep below the lead Fermi level,
εd < −U , a negative differential conductance may appear
in the vicinity of the first threshold bias voltage. Finally,
figure 1(f) emphasizes the fact that TMR may change its sign
along the εd-axis. Such a TMR inversion appears in linear as
well as in nonlinear response regimes. Note also that TMR is
enhanced in the vicinity of the threshold bias voltages. This
enhancement occurs for positive as well as for negative TMR
ratio at εd > −U/2 and at εd < −U/2, respectively. The
width of the TMR peaks is determined by the magnitude of
the spin-flip rate R, i.e. it depends on the distance between the
corresponding split conductance peaks in figure 1(e).

Proceed now to analyze selected cross-sections of the
maps in figure 1 in relation to the I –V characteristics
calculated for other values of the spin-flip rate R. Our further
calculation will also include spin precession on the dot, the
magnitude of which may be evaluated from the non-vanishing
off-diagonal occupation numbers given by equation (29). In
addition, the influence of the lead spin polarization on the
spin-valve effect in the presence of coherent rotations of
electron spin on the dot, and the R-dependent modification of
the rectification effect in asymmetrical junctions will also be
briefly discussed.

4.2. Linear response regime, V ≈ 0

Consider a symmetric tunneling junction in the equilibrium
situation. In figure 2 the behavior of the linear conductance
and the corresponding TMR is shown for selected values of
the parameter R. As stated earlier, when R = 0, the linear
conductance has peaks at resonance energies εd = 0 and εd =
−U . It is also clearly seen that the conductance is symmetric
at εd = −U/2. Due to higher-order tunneling transitions
taking place in the equilibrium situation, the corresponding
TMR ratio is enhanced in the whole range of the εd parameter
except for the resonance energies. If weak spin-flip processes

Figure 2. Linear conductance in the parallel, G lin(P) (black solid
line), and antiparallel, G lin(AP) (black dotted line), configuration and
TMR (red solid line) as a function of the QD energy level for
selected spin-flip rates R (eV). The cross-sections of the maps in
figure 1, taken at V = 0 correspond to the case R = 0 (a) and
R = 0.2 eV (d). The other parameters are as in figure 1.

are involved, R ≈ �ν , the symmetry of the conductance is
broken in the P configuration and the height of the resonance
peaks is diminished; however, still only a single conductance
peak appears (see figure 2(b)). When the incident electrons
tunnel coherently from the source lead onto the discrete level
split by the coherent intradot spin rotation then, as displayed
in figures 2(c) and (d), with increasing R two separate peaks
become visible at resonances. To clearly establish the effects
due to tunneling through the spin channels εd±R and εd +
U±R we have taken U > 2R for calculations. One should
also point out the asymmetry of the split resonance peaks in
figures 2(c) and (d). The latter results from the fact that an
electron may tunnel from the source lead into two different
states on the dot. These two states are determined, according
to the equation (8), by the tunneling terms T ν

k↑a†
νk↑(d↑ + d↓)

and T ν
k↓a†

νk↓(d↓ − d↑). The difference in height of the split
conductance peaks visible in figures 2(c) and (d) follows from
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Figure 3. Bias dependence of the electric current ((a)–(d)) and differential conductance ((e)–(h)) for the symmetric junction in the parallel
(solid lines) and antiparallel (dotted lines) configuration, for selected spin-flip rates R (eV). For clarity the differential conductance is
displayed only for positive bias voltages. The dot energy is εd = 1 eV and the other parameters are as in figure 1.

the fact that one of the mentioned dot states (more precisely
the one to which down-spin electrons are tunneling) is weakly
coupled to the leads.

The competition between the level splitting, Coulomb
correlations on the dot and the broadening of the split levels
that arises from the tunneling coupling to the leads dominates
the resonant behavior of the linear conductance of the system,
and the latter in turn determines the TMR features. In
particular, it is seen that TMR inversion at each resonance
occurs and the amplitude of the TMR ratio changes from
−50% up to 50%. Effectively, such an enhancement is larger
than in the case of R = 0, where the TMR increases 30% above
its minima at εd = 0 and −U . It is worth noting that TMR
inversion in the presence of coherent spin-flip transitions on the
dot has been predicted previously in magnetic tunnel junctions
in the Kondo temperature regime [7, 8]. The change in sign
of TMR at a gate voltage where the differential conductance
peak is observed has also been detected experimentally beyond
the Kondo regime in a hybrid device based on semiconductor
InAs QD coupled to Ni electrodes. It is reported that the TMR
value is changed from positive (30%) to negative (−60%).
The sign changed TMR effect was basically interpreted in
terms of the spin-dependent resonant tunneling model [61]. It

was shown that the transmission probabilities calculated for
strongly asymmetric coupling of the QD to the leads (which
was the case for the experimental setup) gave rise to the
negative TMR. Taking the present discussion into account, one
may also suggest tunneling into superposition of the up-spin
and down-spin states on the dot as another possible mechanism
responsible for the observed TMR inversion.

4.3. Nonlinear response regime, V �= 0

In discussion of the nonequilibrium situation we start with the
symmetric junction, assuming in the following that the dot
energy level is always empty in the corresponding equilibrium
situation, i.e. εd > 0 at V = 0.

The electric current and differential conductance in the
absence of intradot spin-flip processes, R = 0, taken for
εd = 1 in equilibrium is displayed in figures 3(a) and (e),
respectively. As described in the preceding section 4.1, the first
and second steps in the current appear as a result of single and
double occupancy of the dot, respectively. The corresponding
differential conductance experiences two resonance peaks,
which are clearly visible in figure 3(e), where for better clarity
only the maxima for positive bias polarization are displayed. In
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turn, figure 3(b) shows that for weak spin-flip transition rates,
R ≈ �ν , the electric current in the AP configuration tends to
the current in the P configuration and the quantities J P and J AP

are practically indistinguishable. The differential conductance
in figure 3(f) reveals, however, that besides the distinct peak
at first threshold bias voltage a small dip also appears at the
2(εd + R) bias voltage, indicating that the QD discrete level
is spin-split. On the other hand, at second threshold still only
single peak in the corresponding differential conductance in
figure 3(f) is visible.

The current behavior changes diametrically when stronger
intradot spin-flip processes are involved. It is seen in
figures 3(c) and (d) that with increasing R additional steps in
the current in the vicinity of both the thresholds appear. The
latter property is even better illustrated by the well-defined
split peaks of the differential conductance in figures 3(g)
and (h). It is seen also that in the P configuration the behavior
of the current around the first threshold bias voltage differs
from that observed at the second threshold. The first step
in the current takes the form of a bump of width 2R, which
gives rise to two differential conductance peaks, one of which
appears as a maximum at bias voltage 2(εd − R), while the
second one at 2(εd + R) appears as a dip of negative value.
The origin of such a behavior may be explained as follows.
For the singly occupied dot, the sequential current becomes
enhanced around the first threshold if electrons start to tunnel
sequentially into a superposition of up- and down-spin states
on the dot, namely into the dot state related to the tunneling
term T ν

k↑a†
νk↑(d↑ + d↓) in equation (8). This scenario holds

until with increasing bias electrons are also allowed to tunnel
into the dot state determined by the term T ν

k↓a†
νk↓(d↓ − d↑). As

discussed earlier, the latter dot state is weakly coupled to the
leads so that a suppression of the electronic transmission arises,
forming the bump in the current–voltage characteristics. This
is in contrast to the situation at the second threshold, where
an interplay between the spin-flip processes and Coulomb
correlations on the dot results in the flat additional step in the
current. Its plateau extends between the bias voltages 2(εd +
U±R) at which the differential conductance experiences the
two maxima clearly visible in figures 3(g) and (h). In the AP
configuration the difference in spin asymmetry for tunneling
rates across the left and right barriers results in a lesser current
enhancement and the additional steps in the current give rise to
double conductance maxima at both thresholds.

The discussed differences between the currents in the P
and AP geometries lead to TMR peaks of width 2R around
the threshold bias voltages. Figure 4 shows that beyond these
maxima, in particular above the second threshold, TMR is
almost entirely reduced (see the cases of R > 0 in figure 4).
Between the thresholds TMR suppression is also significant.
The R-dependency of the latter phenomenon is illustrated
in more detail in the inset of figure 4, where TMR as a
function of R is displayed for the transport bias voltage fixed
at 2.5 eV. Notice that after a significant TMR suppression a
slight enhancement of TMR for larger spin-flip rates arises,
which is simply due to the R-dependent widening of the
TMR maximum around the second threshold. Hence, one
may expect that with increasing Coulomb correlations on the

Figure 4. Bias dependence of TMR for indicated spin-flip rates R
(eV). The other parameters are as in figure 3. The inset shows the
R-dependence of TMR for the bias voltage fixed at 2.5 eV.

dot, TMR suppression between the thresholds would be even
more pronounced. Figure 4 shows also suppression of the
central TMR peak below the first threshold bias voltage. It is
seen that in the assumed limit of R��ν the TMR suppression
is diminished with increasing R. This implies that intradot
spin rotation contributes to charge fluctuations on the dot thus
inducing coherent electron transmission through virtual dot
energy levels.

It is known that when spin rotation processes are involved
the transverse spin components which are related to the
off-diagonal occupation numbers via equation (32) may be
accumulated on the dot, leading to spin precession around
the direction perpendicular to the easy axis of the electrodes.
As follows from figure 5, the magnitude of the off-diagonal
occupation numbers strongly depends on the magnitude of the
spin-flip rate. By using equations (16)–(29) it is predicted
that with increasing R the magnitude of nσ−σ becomes three
or even four orders smaller than the values calculated for
diagonal occupation numbers nσ . One may expect then that
in the regime of R � �ν assumed here, accumulation of the
transverse spin components on the dot would have a rather
minor influence on the electric current transmission.

4.4. Mesoscopic devices with half-metallic electrodes

4.4.1. Spin valve. Assume now that instead of ferromagnetic
external leads, the quantum dot is coupled to half-metallic
(fully polarized in one direction) electrodes, pl = pr = 1.
If R = 0, then in contrast to the situation shown in figure 3(a)
such a tunneling junction works as a perfect spin-valve device.
More specifically, by rotating the lead magnetizations one
may control the flow of electric current from the maximum
value for the fully ‘open’ spin valve in the P configuration
up to the entirely blocked current in the AP case [43, 46].
By definition (38), for the collinear alignment of magnetic
moments of the leads the TMR ratio becomes then infinite.

Figure 6(a) compares electric currents calculated for the
system with R = 0 (see the inset) with the current curves
obtained for the same junction but with the spin-flip rate fixed
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Figure 5. Bias dependence of the averages of the spin transverse components for the symmetrical junction in the parallel and antiparallel
configuration, and for two selected values of the spin-flip rate R: R = 0.02 eV (dotted line) and R = 0.2 eV (solid line). The other parameters
are as in figure 3.

 

Figure 6. Bias dependence of electric current (a) and
TMR (b) for the symmetric junction with the intradot spin-flip rate
fixed at R = 0.2 eV. Electric current in the P configuration and TMR,
calculated for the junction with the lead polarizations pl = pr = 0.5
(dotted lines) are compared to those obtained for the system
with half-metallic electrodes, pl = pr = 1 (solid lines). The I–V
characteristics in the AP configuration (dashed lines) overlap for the
both lead polarizations. The inset shows electric currents for the spin-
valve device with half-metallic electrodes, in the absence of spin-flip
transitions, R = 0. The parameters εd, U , �0 and T are as in figure 3.

at R = 0.2 eV. First, notice that if in the AP configuration
electrons tunnel from the source into the superposition of up-
spin and down-spin states on the dot, then further tunneling

processes to the fully spin-polarized drain lead in the opposite
direction become possible. Thus, spin-flip transitions lift
the current blockade in the AP configuration and also make
the quantity J AP independent of the magnetic polarization of
the leads. This is in contrast to the situation observed in
the P configuration. When one compares the J P curves for
pl = pr = 0.5 (dotted line) and pl = pr = 1 (solid
line) then it is clearly seen that the bump around the first
threshold is enhanced for the system with half-metallic external
leads. Thus, the TMR ratio takes a finite maximum value,
approximately 100% larger than the TMR maximum observed
in figure 4 for the junction with ferromagnetic leads.

4.4.2. Mesoscopic diode. Finally, consider a spintronic
device offering the electric current rectification effect. This
may be realized for a dot coupled via non-equivalent barriers to
two different external leads, at least one being ferromagnetic.
Here for calculations we take α = 0.1 and p l = 0.4,
p r = 1, i.e. it is assumed that the right electrode is made
of a half-metallic material with electrons being totally spin-
polarized at the Fermi level, whereas the factor α = 0.1
indicates that on average electrons can tunnel much more
easily to (from) the left electrode than to (from) the right
one. The basic transport property of such an asymmetric
tunneling junction is the asymmetry of its current–voltage
characteristics with respect to the bias reversal. To be more
precise, the tunneling junction under discussion may work
as a mesoscopic diode. Prototypes of such a device were
proposed in a number of theories [6, 38, 49, 59] and very
recently realized experimentally for a system based on a carbon
nanotube coupled to one ferromagnetic and one nonmagnetic
external electrode [53]. Here, the typical diode-like behavior in
the tunneling junction with arbitrary Coulomb correlations on
the dot and with vanishing spin-flip transitions is represented
by figures 7(a) and (e). For positive bias (the right lead
is the source electrode), the current flows for both parallel
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Figure 7. Bias dependence of electric current ((a)–(d)) and magnetoresistance ((e)–(h)), calculated for asymmetrical tunneling junction in the
P and AP configuration and for indicated values of the parameter R (eV). The parameters assumed for numerical calculations are εd = 1 eV,
U = 0.5 eV, �0 = 0.01 eV, pl = 0.4, pr = 1, α = 0.1 and T = 100 K.

and antiparallel configurations and thus TMR is significantly
suppressed. By contrast, when electrons tunnel through the
dot from the left electrode to the right (half-metallic) one,
then below the first threshold voltage sequential tunneling
is exponentially suppressed. At a sufficiently large bias
voltage the energy level εd enters the tunneling window, and
electric current starts to flow through the junction. This takes
place only in a small voltage range in the vicinity of the
first threshold voltage, where the resonant bump is observed.
Above the bump, the current is suppressed by an electron
residing on the dot and thus a significant enhancement of TMR
is observed between the two threshold bias voltages. Finally,
when εd + U crosses the Fermi level of the source lead, the
current increases again to saturate at a certain level.

Figures 7(b)–(d) show that even weak spin-flip transitions
give rise to a suppression of the diode effect. Such a
process proceeds differently for the currents in the P and AP
configurations. At negative bias the variation of J AP between
the two thresholds is non-monotonic with increasing R, while
the R-dependent variation of the J P current in the same bias
voltage range is monotonic. Moreover, the suppression of

the TMR between the thresholds, appearing with increasing
R, is accompanied by the enhancement of TMR around the
second threshold. An analogous TMR behavior is visible
at positive bias; however, in this case a larger transmission
for majority and minority electrons makes the effect of the
TMR enhancement much less pronounced. Interestingly, the
TMR ratio predicted in the vicinity of the first threshold shows
that coherent spin-flip processes may induce TMR maxima
exceeding the results observed at R = 0. For the parameters
used here it is found that the additional steps in the currents
at the first threshold give rise to TMR maxima approximately
10% larger than the TMR plateau in figure 7(e).

5. Summary and conclusions

Spin-polarized transport through a single-level interacting
quantum dot weakly coupled to ferromagnetic leads has
been studied by means of the nonequilibrium Green function
approach applied in the Hartree–Fock approximation. We
have analyzed the electric current, conductance and tunnel
magnetoresistance as well as accumulation of the spin
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components on the dot in the presence of spin-flip processes
causing coherent rotations of electron spin on the dot.

A number of new features of the spin-valve device
under discussion have been revealed in the nonlinear response
regime. It was shown that when spin-flip transitions
overwhelm tunneling processes then the electric current
exhibits a complex step-like behavior in the vicinity of the
threshold bias voltages. The latter property gives rise to such
effects as negative differential conductance and splitting of the
differential conductance peaks, as well as to enhancement of
the corresponding TMR at bias voltage range between each
pair of the split conductance maxima. The maps of the TMR
ratio plotted in the (eV –εd)-plane also showed that due to
intradot spin-flip transitions TMR is significantly suppressed
in the areas where sequential electron tunneling takes place
as well as in the Coulomb blockade regions where higher-
order tunneling processes occur. Moreover, self-consistent
calculation of the dot occupation numbers resulted in non-
zero averages of the transverse spin components of an electron
residing on the dot. The latter indicates that spin-flip processes
on the dot may be accompanied by spin precession around
the direction perpendicular to the easy axis of the external
electrodes.

Effects such as a spin valve for a QD coupled to
identical half-metallic electrodes and the diode-like behavior
observed for a QD coupled via non-equivalent barriers to
one ferromagnetic and one half-metallic electrode have been
proved to be suppressed in the presence of intradot spin
flips. In the former case the non-zero current in antiparallel
configuration gives rise to finite TMR opposed to an infinite
TMR ratio in a system without spin-flip processes. In turn,
in the case of the mesoscopic diode, spin flips lead to a
reduction of the asymmetry in the current with respect to the
bias reversal. Our calculations also reveal that reduction of the
diode effect is accompanied by appearance of TMR maxima
that may even exceed the TMR ratios observed for the system
without intradot spin-flip transitions.

Finally, TMR inversion is found in the linear as well as
nonlinear response regimes. In particular, TMR oscillation is
predicted to occur in the linear limit and it is shown that TMR
is inverted within each resonance of the linear conductance.
Similar qualitative behavior has been reported in previous
theories describing spin-polarized transport in the Kondo and
co-tunneling regimes and has also been observed in recent
experiments on spin-polarized electronic transport through
InAs QDs coupled to Ni electrodes [52].
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